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Based on the Zubarev method of nonequilibrium distribution functions, a statistical-mechanical theory of the
rheological properties of liquid-crystalline polymers has been constructed. The distinctive features of the
media in question in the case of shear flow have been described using this theory.

Both experimental and theoretical investigations of the rheological properties of liquid-crystalline polymeric
systems have become more active in the last decade [1]. It was found that the flow of these systems differs signifi-
cantly from the flow of isotropic polymers. In particular, in the case of steady-state shear flow of liquid-crystalline
polymeric systems the difference between the diagonal elements of the tensor of stresses streamwise and across the
flow (the so-called first difference of normal stresses) is nonzero and depends on the rate of shear deformation. How-
ever, attempts at constructing the rheology of liquid-crystalline polymeric systems within the theory of low-molecular-
weight liquid crystals showed the inability of the latter to adequately describe the flow of the media in question,
which led to the necessity of generalizing the equations of hydrodynamics of liquid crystals to the case of polymeric
systems. In the majority of works, use is made of the phenomenological approach in which the rheological charac-
teristics of a medium are found experimentally while the structural parameters have no explicit microscopic determina-
tion [2].

In this connection, the problem of construction of a statistical-mechanical theory of the rheological properties
of liquid-crystalline polymeric systems is pressing. The formulated problem will be solved based on the general meth-
ods of modern nonequilibrium statistical mechanics [3] with the use of the description of the liquid-crystalline poly-
meric system as a system with a variable internal structure. As the parameters of state of the medium we select the
average values of the microscopic densities of mass, momentum, and energy
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is expressed in terms of its translational momentum Pν = mvν and in terms of the momentum παν which is canoni-
cally conjugate to the radius vector yαν of the particle α of mass mαν; the radius vector is reckoned from the center
of mass of the molecule with a number ν whose position is prescribed by the radius vector xν.

The interaction between the particles α and β is described by the potential Φ(Rαν, Rβµ), which depends on
their arrangement characterized by the radius vectors Rαν = xν + yαν and Rβµ = xµ + yβµ.

To allow for the variable internal structure we use the density of the moment of inertia of the molecule (of
the structural unit)
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and its generalized moment of momentum [3]
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The quantity P
^

ij(x, t) yields simultaneous description of the rotation of the structural unit and the rate of dis-
tortion of its shape. The antisymmetric part of the quantity P

^
ij(x, t) is the intrinsic moment of momentum
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while its symmetric part determined by the equality
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characterizes the rate of change of the molecular shape.
The equations of motion of the introduced dynamic quantities are obtained using the formalism of Poisson

brackets and they are represented in the form
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The expressions for the corresponding microscopic flows and sources are given in [3]. In what follows, we
will disregard the inertia of deformation of a molecule which can manifest itself at high frequencies close to the fre-
quencies of intramolecular vibrations; therefore, we exclude the equations of motion for L

^
ik from consideration.

Before the averaging of microscopic equations of motion it is necessary to change to the co-moving reference
system [3]. Co-motion is carried out by the average values of the velocity of macroscopic motion of the medium v(x,
t), the angular velocity of rotation of the structural elements ω(x, t), and the average rate of deformation of the struc-
tural element ϕij(x, t). The indicated characteristics of macroscopic motion of the medium with a variable internal
structure are determined by the relations
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the tensor Φil(x, t) describes simultaneously the rotation of the structural element and its deformation
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while the angle brackets with a subscript q denote quasiequilibrium averaging,
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is the density of the moment of inertia.
It is of interest to note that the quasiequilibrium averaging of the equation of motion for the generalized mo-

ment of momentum leads to equations which are a generalization of the Eulerian equations of the dynamics of rotation
of a solid body to the case where the body is capable of being deformed [3].

The total nonequilibrium averaging of the equations of motion for the microscopic densities mentioned is car-
ried out using the Zubarev distribution function [4] (which is the solution of the Liouville equation at the level of con-
tracted description of flow of the medium under study) with the application of the average values of the densities of
dynamic quantities used. The result of the averaging has the form [3]
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the angle brackets denote nonequilibrium averaging.
We note that the quasiequilibrium averaging results in the following rigorous expressions for Li and Lik:
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This yields an important conclusion on the interrelation between the macroscopic rotation of the structural unit and its
deformation.

The fundamental result of the nonequilibrium averaging is not only the derivation of macroscopic equations of
motion but also the obtaining of material equations (rheological relations). Finally, a closed system of macroscopic
equations of motion and rheological relations is established. In the case in question the material equations have the
form
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Ln,m are the corresponding tensors of kinetic coefficients. The superscripts denote the fluxes whose time correlation de-
termines the corresponding kinetic coefficient, i.e.,

L
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where ΠM is the Mori projection operator [3] and L is the Liouville operator.
The thermodynamic parameter λmn is expressed in the form of the functional derivative of the Helmholtz free

energy with respect to the density of the moment of inertia:
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λmn = 
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Similarly to how the angular velocity of proper rotation of molecules relaxes to the angular velocity Ω =
2−1 rot v of hydrodynamic rotation, the tensor of internal deformation of the structural element relaxes to the tensor
of deformation rates 2−1(vi,k + vk,i). Upon completion of the relaxation mentioned, we have Φik = vi,k. In what follows,
we will consider the indicated relaxed states.

With allowance for the above remarks, we write, in explicit form, the equation for the evolution of the struc-
tural parameter Jij and the material equation for the stress tensor τik:
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Here vi,n = ∂vi
 ⁄ ∂xn are the gradients of the velocity of hydrodynamic flow in spatial coordinates.

In describing the rheological properties of the liquid-crystalline polymeric system, we should allow for the
processes of retardation. To do this we will consider the tensor of kinetic coefficients
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as the integral operator. Then the contribution to the stress tensor (19) related to the deformation-rate field will be
written in the form [3]
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In what follows, we will model the integral kernel in the last equality in the form of the exponent λ−1aikmn′

exp [−λ−1(t − t′)], assuming (for the sake of simplicity) the existence of just a single time λ of relaxation, which en-
ables us to obtain the formula
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relating the tensor τik′  determined by formula (21) to its time derivative.
In considering the viscous properties of low-molecular-weight liquid crystals, one usually disregards the con-

tributions of retardation processes; then the tensor τik′  is represented in terms of the tensor of the coefficients of non-
relaxing viscosity aikmn′  which appears in relation (22): τik′  = βaikmn′ emn [3].

Using (18) we eliminate the thermodynamic parameter λmn from relation (19). In so doing we pass from the
derivative d ′ ⁄ dt in the co-moving reference system to the material derivative d ⁄ dt in the laboratory reference system
in accordance with the relation 
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(23)

for the second-rank tensor Aik. With allowance for the above remarks, Eq. (19) takes the form
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where we have introduced the notation Uikmn = aikmn′  − βAikjlLjlmn
j,τ  and Aikmn = Likps
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−1 .

We note that Eq. (24) established within the framework of nonequilibrium statistical mechanics coincides in
form with the corresponding equations obtained based on the phenomenological approach [1] and it is its statistical
substantiation. Unlike the phenomenological consideration, the material kinetic coefficients are determined in the form
of the time correlation functions of the corresponding fluxes, which provides the basis for their evaluations and pre-
diction from the first principles.

Let us apply the theory constructed above to consideration of the rheological properties of the liquid-crystal-
line polymeric system in the case of plane shear flow. We confine ourselves to steady-state processes, which enables
us to use Eq. (24) in the form

τik + τim
′ vk,m + τmk

′ vj,m + vmτik,m
′  = − Pδik + βUikmnemn + βAikmn (Jmnvl),l . (25)

We will consider the liquid-crystalline polymer between two infinite surfaces the distance between which is
equal to 2h; one surface is at rest, while the other moves in parallel to the first surface with a constant velocity V. If
we introduce the coordinate system (x1, x2, x3), the x1 axis of which is directed in parallel to V, the x2 axis of which
is perpendicular to the surfaces, and the x3 axis of which is perpendicular to the first two axes, then the field of ve-
locities will have only a single nonzero component, i.e., v(x) = (v(x2), 0, 0) and the components of the director which
shows the direction of predominant orientation of the structural elements of the medium are determined in terms of the
angle θ between the director and the direction of the hydrodynamic flow: n(x) = (cos θ(x2), sin θ(x2), 0). Then the
field of deformation rates will have just a single nonzero component γ = v1,2.

Upon substitution into (25) we arrive at the following formulas for the components of the stress tensor in the
coordinate system in question:

τ21 (θ, γ) = A21 (θ) γ + B21 (θ) γ2 ,

τ11 (θ, γ) = A11 (θ) γ + [B11 (θ) − λA21 (θ)] γ2 − λB21 (θ) γ3 ,

τ22 (θ, γ) = A22 (θ) γ + [B22 (θ) − λA21 (θ)] γ2 − λB21 (θ) γ3 ,

τ12 (θ, γ) = A12 (θ) γ + [B12 (θ) − λ(A11 (θ) + A22 (θ))] γ2 −

− λ [B21 (θ) + B22 (θ) − 2λA21 (θ)] γ3 + λ2
A21 (θ) γ4 ,

(26)

where the coefficients of the powered deformation rates are determined in terms of the coefficients of the material ten-
sors appearing in Eqs. (18) and (19).

The obtained nonlinear material relations together with the equation of motion of the liquid-crystalline poly-
meric system (equations of momentum balance and moment of momentum) form a rather complex system of nonlinear
differential equations for the functions θ(x2) and γ(x2) even in such a simple case; this system can be solved using the
corresponding numerical methods.

We compare the results obtained and the existing experimental data for an acetoxypropylcellulose (APC) liq-
uid-crystalline polymeric system with a molecular weight of 94,000 and 129,000 [5, 6]. To do this it is convenient to
introduce the so-called first

N1 = τ11 − τ22 (27)

and second
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N2 = τ22 − τ33 (28)

differences of normal stresses. Then formulas (26) will take the form

N1 = βλγ [c11 − c22 − λγ (c12 + c21) − 2 (λγ)2 c11] ,

N2 = βλγ (c11 − c33) − N1 ,

τ12 (θ, γ) = βλγ [c12 + λγc11] ,

(29)

where the quantities cij are functions of the angle θ and they are determined by the coefficients of the material tensors
appearing in Eqs. (18) and (19).

The results of the comparison of theoretical calculations and experimental data for the first difference of
stresses are presented in Fig. 1. As is clear from the indicated plots, the theory satisfactorily describes the behavior of
the first difference of stresses with variation of the rate of shear deformation of the medium.
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NOTATION

N, number of molecules in the system; n, number of atoms in the molecule; v, velocity of hydrodynamic mo-
tion of the medium; τ^ik(x), microscopic stress tensor; π^ ik(x), microscopic moment-stress tensor; J

^
k
 H,  J

^
ijl
 J ,  and t̂ikl, mi-

croscopic densities of the energy fluxes, the ordering parameter, and the generalized moment of momentum
respectively; v(x, t), average velocity of macroscopic motion of the medium; ω(x, t), average angular velocity of rota-
tion of the structural elements; ϕij(x, t), average rate of deformation of the structural element; enm = ∂vm

 ⁄ ∂xn −
eknmωk, deformation-rate tensor; P, pressure; λmn, tensor thermodynamic parameter conjugate to the average density of
the moment of inertia. Subscript:  ̂ , microscopic quantity.
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Fig. 1. First difference of stresses N1 vs. deformation rate γ: a) for APC-94,000
and b) APC-129,000 (solid curve, theory; symbols denote: a) experiment [5]
and b) [6]). N1, Pa; γ, sec−1.
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